Gevrey Hypoellipticity for Partial Differential Equations with Characteristics of Higher Multiplicity

نویسنده

  • G. De Donno
چکیده

We consider a class of partial differential equations with characteristics of constant multiplicity m ≥ 4. We prove for these equations a result of hypoellipticity and Gevrey hypoellipticity, by using classical Fourier integral operators and Sm ρ,δ arguments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gevrey hypoellipticity for a class of kinetic equations

In this paper, we study the Gevrey regularity of weak solutions for a class of linear and semi-linear kinetic equations, which are the linear model of spatially inhomogeneous Boltzmann equations without an angular cutoff.

متن کامل

Unique Continuation and Complexity of Solutions to Parabolic Partial Differential Equations with Gevrey Coefficients

In this paper, we provide a quantitative estimate of unique continuation (doubling property) for higher-order parabolic partial differential equations with non-analytic Gevrey coefficients. Also, a new upper bound is given on the number of zeros for the solutions with a polynomial dependence on the coefficients.

متن کامل

On the Gevrey Analyticity of Solutions of Semilinear Perturbations of Powers of the Mizohata Operator

We consider the Gevrey hypoellipticity of nonlinear equations with multiple characteristics, consisting of powers of the Mizohata operator and a Gevrey analytic nonlinear perturbation. The main theorem states that under some conditions on the perturbation every H s solution (with s ≥ s0) of the equation is a Gevrey function. To prove the result we do not use the technique of cut-off functions, ...

متن کامل

The Gevrey Hypoellipticity for Linear and Non-linear

In this paper, we study the Gevrey regularity of weak solution for a class of linear and semilinear Fokker-Planck equations.

متن کامل

Intermediate Optimal Gevrey Exponents Occur

Hypoellipticity in Gevrey classesG is characterized for a simple family of sums of squares of vector fields satisfying the bracket hypothesis, with analytic coefficients. It is shown that hypoellipticity holds if and only if s is greater than or equal to an optimal exponent that may take on any rational value.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000